If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x=4x-49
We move all terms to the left:
x^2-18x-(4x-49)=0
We get rid of parentheses
x^2-18x-4x+49=0
We add all the numbers together, and all the variables
x^2-22x+49=0
a = 1; b = -22; c = +49;
Δ = b2-4ac
Δ = -222-4·1·49
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-12\sqrt{2}}{2*1}=\frac{22-12\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+12\sqrt{2}}{2*1}=\frac{22+12\sqrt{2}}{2} $
| 5^(x-4)=3^(2x) | | x^2+3x-3=0x2+3x−3=0 | | 6r^2+6r-120=0 | | 4x+20=2×+40 | | 10b^2+29b=21 | | M={2b;18} | | 3(5+y)=18 | | 11.3-5a=5.8 | | 11,3-5a=5,8 | | 15-2z=11,9 | | 12y/12=8,4/12 | | 2r-3=-9 | | -6x+7=-6x | | m=10^3*L0 | | 5x=64-4 | | 52/x=-7 | | -52/x=-7 | | 10x-5x+4=64 | | n/4=12/33 | | 3(34,6-16y)+60y=112,2 | | b/5+3=-2 | | (3+2y)×8−10=0 | | (x-3)+(-57+4x)+(3x)=180 | | 5z-7=-2z | | 6/x=24/7 | | 66d=330 | | -3(2x+8)^2=6 | | 2+z/5=1/2 | | 4(1-x)-2=3x+1 | | 15x-2x+29=5x+27 | | 2+4x=58 | | -3=-3(-7+a) |